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We calculate the full transport counting statistics in a three-terminal tunnel device with one superconducting
source and two normal-metal or ferromagnet drains. We obtain the transport probability distribution from direct
Andreev reflection, crossed Andreev reflection, and electron transfer which reveals how these processes’
statistics are determined by the device conductances. The cross-correlation noise is a result of competing
contributions from crossed Andreev reflection and electron transfer, as well as antibunching due to the Pauli
exclusion principle. For spin-active tunnel barriers that spin polarize the electron flow, crossed Andreev re-
flection and electron transfer statistics exhibit different dependencies on the magnetization configuration and
can be controlled by relative magnetization directions and voltage bias.

DOI: 10.1103/PhysRevB.78.224515 PACS number�s�: 74.40.�k, 72.25.Mk, 73.23.�b, 74.50.�r

I. INTRODUCTION

In crossed Andreev �CA� reflection, a Cooper pair in a
superconductor �S� is converted into an electron-hole quasi-
particle pair in normal-metal terminals �Nn� or vice versa.1,2

This process has potential applications in quantum informa-
tion processing since it induces spatially separated entangled
electron-hole pairs. The performance of entanglers utilizing
this effect is diminished by parasitic contributions from elec-
tron transfers �ETs� between the Nn terminals. This process
will be referred to as ET but is also often denoted as electron
cotunneling or elastic cotunneling.

It has been suggested that the noise properties of crossed
Andreev reflection can be used to distinguish it from electron
transfer between the normal-metal terminals.3 Mesoscopic
transport noise also reveals information about charge carriers
which is inaccessible through average current measurements.
In a system with several drain terminals, i.e., current beam
splitters, noise measurements show signatures of correlations
between the current flow in separated terminals. The cross-
correlation noise has attained interest recently since it can be
utilized to study entanglement4–16 and correlated transport.

Crossed Andreev reflection in superconductor-normal-
metal systems has been experimentally studied in Refs.
17–19. In Ref. 17 the nonlocal voltage was measured in a
multilayer Al/Nb structure with tunnel contacts between the
superconducting Nb and the normal-metal Al layers. Current
was injected through one of the normal-metal-
superconductor contacts and a nonlocal voltage measured be-
tween the superconductor and the other normal metal. At
injection bias voltage below the Thouless energy ETh
=�D /d2 associated with the separation d between the normal
metals, positive nonlocal voltage was measured and this was
interpreted as the result of dominating ET. For voltages eV
above ETh the nonlocal voltage changed sign, which was
interpreted as a consequence of dominating CA. Subse-
quently, measurements reported in Ref. 18 on nonlocal volt-
ages in Au probes connected to a wire of superconducting Al
by transparent interfaces indicated that the ET contribution is
larger than the contribution from CA.

The competition between CA and ET determines the sign
of the nonlocal voltage and has been studied theoretically

using various approaches20–28 including the circuit theory of
mesoscopic superconductivity utilized in this paper.29,30 We
will consider the linear-response nonlocal conductance Gnl.
In superconductor-normal-metal hybrid devices where trans-
port in one normal-metal terminal N1 is measured in re-
sponse to an applied voltage in another normal-metal termi-
nal N2, this quantity is defined by

�V2
I1 = − Gnl = − �GET − GCA� , �1�

where we have introduced conductances associated with the
charge-transfer processes introduced above, GCA for crossed
Andreev reflection, and GET for electron transfer.20 The sign
of the nonlocal conductance is determined by the competi-
tion between ET and CA. Theoretical calculations based on
second-order perturbation theory in the tunneling Hamil-
tonian formalism predicted that the nonlocal conductance re-
sulting from CA reflection is equivalent in magnitude to the
contribution from ET.20 Thus the induced voltage in N1 in
response to the bias on N2 should vanish since CA and ET
give currents with opposite sign, in contrast to the measure-
ments reported in Refs. 17–19. The tunneling limit was also
considered in Refs. 26, 29, and 31, and it has been found that
the nonlocal conductance is in fact of fourth order in the
tunneling and favors ET.

Experimental investigations of crossed Andreev reflection
in superconductor-ferromagnet �S-F� structures have been re-
ported in Refs. 32 and 33. The measurements in Ref. 32 were
modeled using the theory of Ref. 20.

Experimental studies of the CA and ET noise properties
can be used to determine the relative contributions of these
processes to the nonlocal conductance. It was shown theo-
retically that CA contributes positively to the noise cross
correlations, whereas ET gives a negative contribution.3 Cal-
culations of higher-order noise correlators or the noise de-
pendence on spin-polarizing interfaces can reveal further in-
formation about the CA and ET processes.

We will consider the full counting statistics �FCS� which
encompasses all statistical moments of the current flow.34–36

The noise properties of ET and CA reflection thus obtained
can be used to study the competition between these processes
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and reveal information that is not accessible in the mean
currents. Our calculation also determines the contribution to
the noise coming from the fermion statistics �Pauli exclusion
principle�. Moreover, the charge-transfer probability distribu-
tion provided by FCS reveals information about the probabil-
ity of elementary processes in the circuit.37

In this paper we calculate the FCS of multiterminal
superconductor-normal-metal and superconductor-
ferromagnet proximity structures, and study the currents,
noise, and cross correlations associated with the various
transport processes. We obtain the probability distribution for
transport at one normal-metal drain and show that the prob-
ability associated with ET is larger than the probability asso-
ciated with CA. For spin-active interfaces we show how spin
filtering can be utilized to control the relative magnitude of
the CA and ET contributions to the transport. Finally, we
consider crossed Andreev reflection for spin triplet supercon-
ductors. This paper goes beyond our previous
publications,29,30,37 in that we consider different bias voltages
on the normal-metal or ferromagnetic drains and discuss the
effect of triplet superconductivity.

This paper is organized in the following way. In Sec. II
we describe the electronic circuit and outline the formalism
utilized to calculate the cumulant generating function �CGF�
of the probability distributions. In Sec. III we discuss the
results in the case of normal metals, and in Sec. IV we con-
sider the spin-active connectors. Finally, our conclusions are
given in Sec. V.

II. MODEL

The systems we have in mind can be represented by the
circuit theory diagram �see Sec. II A� shown in Fig. 1. A
superconducting source terminal �S� and normal-metal drain
terminals �Nn� are connected by tunnel barriers with conduc-
tance gn to a common scattering region which is modeled as
a chaotic cavity �c�. The assumptions on the cavity are that
the Green’s function is isotropic due to diffusion or chaotic
scattering at the interfaces and that charging effects and
dephasing can be disregarded. The tunnel barriers can be
spin active with spin polarization gMRn /gn. We consider elas-
tic transport at zero temperature. The superconducting termi-

nal is grounded, and biases Vn are applied to the normal
terminals. We assume that Vn��0, where �0 is the gap of
the superconducting terminal. In addition to the ET and CA
processes described above, there can also be direct Andreev
�DA� reflection between the superconductor and one normal-
metal terminal, where both particles of the Andreev reflected
pair are transferred into Nn. Semiclassical probability argu-
ments show that the subgap charge current in the connector
between N1 and c in the three-terminal network in Fig. 1 has
the following structure:20,29

I1�E� = GCA�V1 + V2� − GET�V2 − V1� + 2GDA1V1, �2�

where we have introduced the conductance GDA1 associated
with direct Andreev reflection between terminals N1 and S.
Equation �2� leads to the definition of the nonlocal conduc-
tance in Eq. �1� which shows that when V2�V1, ET and CA
give competing negative and positive contributions, respec-
tively, to the current. The conductances in Eq. �2� will be
determined in the calculation below.

A. Circuit theory

The circuit theory of mesoscopic transport is reviewed in
Ref. 38 and is a suitable formalism to study proximity effects
in superconducting nanostructures. The theory is developed
from a discretization of the quasiclassical theory of
superconductivity,39 in combination with a theory of bound-
ary conditions based on scattering theory.

The circuit theory is formulated in terms of the quasiclas-
sical Green’s functions of the terminals and nodes in the
system. Nodes can represent small islands or lattice points of
diffusive parts of the system. Under the assumptions de-
scribed above, the Green’s function of the spin-singlet S ter-

minal in Fig. 1 is ǦS= �̂1 where �̂k is a Pauli matrix in Nambu

space. The Green’s functions Ǧn of normal-metal terminals
Nn are given by

Ǧc�E� = ��̂3�̌3 + ��̌1 + i�̌2� �E� � eVn

�̂3�̌3 + sgn�E��̂3��̌1 + i�̌2� �E� 	 eVn,
� �3�

where �̌k are Pauli matrices in Keldysh space.

Matrix currents Ǐ describe the flow of charge, energy, and
coherence between terminals and nodes through connectors;
and conservation of these currents are imposed at each node.
This generalized Kirchhoff law determines the Green’s func-

tion of the cavity Ǧc. The balance of matrix currents Ǐn flow-
ing between each terminal n=1,2 ,S and the cavity, includ-
ing the effect of superconducting pairing in c, can be written
as

�
n

Ǐn − � e2
0Vc

�
�c�̂1,Ǧc� = 0. �4�

Here, �c is the superconducting order parameter on the cav-
ity, 
0 is the density of states, and VN is the volume of the
cavity.30,39 The second term on the left-hand side of the equa-
tion above induces electron-hole pairing. Since the pairing
term has the same structure as the coupling to the supercon-
ducting terminal 	see Eq. �5�
, it gives quantitative effects

S

N1 N2

gS

g1

gMR1

g2

gMR2c

FIG. 1. Circuit theory representation of the considered beam
splitter where supercurrent flows from a superconducting reservoir
�S� into normal-metal drains �Nn�. Tunnel barriers between cavity
�c� and the drains can be spin active and are characterized by the
conductances gn and spin polarizations gMRn /gn.
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that are captured by renormalizing e2
0Vc�c /�+gS→gS and
will be omitted in the following. Here, gS is the supercon-
ductor tunnel conductance.

Spin-dependent transmission and reflection are described
by tunneling amplitudes tk,�

n and rk,�
n for electrons with spin �

incident from the cavity side on the interface between the

cavity and terminal n in channel k. The matrix current Ǐn
through such spin-active interfaces is40

Ǐn =
gn

2
	Ǧn,Ǧc
 +

gMRn

4
	�mn · ��̂3,Ǧn�,Ǧc
 . �5�

Here, gn=gQ�k,��tk,�
n �2 is the tunnel conductance where gQ

=e2 /h is the conductance quantum, gMRn=gQ�k��tk,↑
n �2

− �tk,↓
n �2� is the conductance polarization, � is the vector of

Pauli matrices in spin space, and the unit vector mn points in
the direction of the magnetization of the spin-polarizing con-
tact. In Eq. �5� we have neglected an additional term related
to spin-dependent phase shifts from reflection at the interface
which can be suppressed by a thin nonmagnetic oxide
layer.41,42 The effects of spin filtering contained in the polar-
ization gMRn, which can be obtained experimentally using
ferromagnetic terminals, will be studied in Sec. IV.

In systems where all the connectors are tunnel barriers
described by matrix current �5�, it is possible to solve Eq. �4�
analytically and obtain the cavity Green’s function in terms
of the terminal Green’s functions and the tunneling param-
eters. To this end, we note that it is possible to write Eq. �4�
as 	M̌ , Ǧc
=0. Employing the normalization condition Ǧc

2

=1, the solution can be expressed in terms of the matrix M̌
as11

Ǧc = M̌/
M̌2. �6�

This result facilitates calculation of the cumulant generating
function of the charge-transfer probability distribution in tun-
nel barrier multiterminal circuits.

B. Full counting statistics

Full counting statistics is a useful tool to compute currents
and noise in a multiterminal structure43 and also provides the
higher statistical moments that may become experimentally
accessible in these systems. Additionally, one can obtain in-
formation about the elementary charge-transport processes
by studying the probability distributions.37 The CGF S���n��
of the probability distribution is directly accessible by the
Green’s function method and is defined by

e−S���n�� = �
Nn

P��Nn�;t0�exp	− i�n
�nNn
 ,

P��Nn�;t0� =
1

�2
�M�
−





dM� exp	− S���n�� + i�n
Nn�n
 .

�7�

Here, P��Nn� ; t0� is the probability to transfer N1 ,N2 , . . . ,Nn
electrons into terminal N1,N2, . . . ,Nn in time t0 and M is the
total number of terminals in the circuit. The CGF is a func-

tion of the set of counting fields ��n� which are embedded in
the Green’s function at each terminal by the transformation

Ǧn→ei�n�̌K/2Ǧne−i�n�̌K/2 where �̌K= �̂3�̌1. The CGF will be de-
termined by the following relation:43

ie

t0

�S���n��
��n

=� dEIn���n�� , �8�

where In���n�� is the particle �counting� current through con-
nector n in the presence of the counting fields. Our task is
now to integrate this equation and obtain the CGF S���n��.
Using the general solution to the matrix current conservation
�6�, it was found in Ref. 11 that this is possible by rewriting

the counting current in terms of a derivative of M̌ with re-
spect to the counting fields. Explicit derivation shows that

In���n�� =
1

8e
Tr��̌KǏn���n��� =

1

4ei
��n

Tr�
M̌2� . �9�

This result is valid also in the presence of spin-active con-
tacts in Eq. �5�. Combining Eq. �9� with Eq. �8� yields
S���n�� straightforwardly.

Practical calculations of CGFs are performed by diagonal-

izing the matrix M̌, which allows us to express the CGF in

terms of the eigenvalues of M̌,

S = −
t0

4e2� dE�
k


�k
2. �10�

In this equation, ��k� is the set of eigenvalues of M̌.
We can obtain the cumulants of the transport probability

distribution by successive derivatives of the CGF.36 Specifi-
cally, we obtain the mean current from

In = −
ie

t0
� �S�����

��n
�

��=0�
. �11�

The current noise power is given by

Cm,n = 2
e2

t0
� �2S�����

��m � �n
�

��=0�
, �12�

where in the multiterminal structure, the autocorrelation
noise at terminal n is given by Cn,n. When m�n, Eq. �12�
gives the noise cross correlations.

III. NORMAL-METAL DRAINS

In this section, we will consider the FCS of the supercon-
ducting beam splitter in Fig. 1 when the connectors are not
spin polarizing and generalize previous works by taking into
account a difference in drain terminal voltages V1�V2. In
the regime E�eV1 ,eV2 the only contribution to the nonlocal
conductance comes from CA since we consider zero tem-
perature. The resulting CGF was studied in Ref. 11 where it
was assumed that V1=V2. In the general case V1�V2, the
total CGF S following from Eq. �10� has one contribution
from the energy range E�eV1 ,eV2, and if the voltages are
different, there is another contribution in the energy range
eV1�E�eV2 �we assume V2�V1�,
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S = −
t0

4e2�
k
��

−eV2

−eV1

+ �
−eV1

eV1

+ �
eV1

eV2 �dE
�k
2�E�

= Sa�V1� + Sb�V2 − V1� . �13�

There is no contribution to transport at �E��eV2. Here, we
have defined two separate contributions to the CGF that gov-
ern transport in the regime E�eV1 ,eV2 �Sa� where only An-

dreev reflections �CA and DA� can occur, and the regime
eV1�E�eV2 �Sb� where, in addition to Andreev reflections,
ET can take place. The contribution Sa was calculated in
Ref. 11, see Eq. �14a�, where we have defined g�= 	gS

2

+g2
1/2 and g=g1+g2. The counting factors e2i�S−i�m−i�n de-
scribe processes where two particles are transferred from S
and one particle is counted at terminal Nm and at terminal Nn
�m ,n=1,2�.

Sa = −
t0V1


2e

g�

2 + 
g�
4 + 4gS

2�
m,n

gmgn�e2i�S−i�m−i�n − 1� , �14a�

Sb = −
t0�V2 − V1�


2e

g�

2 + 2g1g2�ei�1−i�2 − 1� + 
g�
4 + 4gS

2�
n

gng2�e2i�S−i�n−i�2 − 1� + 4g1g2g2�ei�1−i�2 − 1� . �14b�

In Eq. �14� we show the calculated Sb which has contribu-
tions from electron transfer. The counting factor ei�1−i�2 de-
scribes events where an electron is transferred from N1 to
N2. Compared to Sa, we see that DA events between S and
N1 that would be described by counting factors e2i�S−2i�1 no
longer occur. This can be understood from the electron-hole
nature of Cooper pairs; see Fig. 2. Two quasiparticles, with
energy +E for the electron and −E for the hole, constitute the
Andreev reflected quasiparticle pairs in c. In the energy
range considered here, eV1�E�eV2, the states in N1 are
occupied, precluding DA reflection into N1. A similar argu-
ment shows that in CA processes, the electron must be trans-
ferred into N1 and the hole into N2.

The nonlocal conductance Gnl=GET−GCA following from
Eq. �14b� is in agreement with Ref. 29 where

GET =
g1g2

2

2g2 + gS
2

	g2 + gS
2
3/2 , GCA =

g1g2

2

gS
2

	g2 + gS
2
3/2 .

�15�

The nonlocal conductance is dominated by ET and is of or-
der O�gn

4�.26,29 When g /gS�1, the nonlocal conductance

vanishes due to equal probability for ET and CA as we will
explicitly show by inspection of the probability distribution
below. In the opposite limit that the coupling to normal ter-
minals dominates, gS /g�1, the conductance for ET is to
lowest order given by g1g2�1−�N� /g. Here �N= �gS /g�2 /2 is
the lowest-order correction to the low-energy density of
states due to superconducting correlations. The CA conduc-
tance becomes g1g2�N /g in this limit.

Let us now consider cross correlations. In general, CA
leads to a positive contribution and ET leads to a negative
contribution to the cross correlation. An additional negative
contribution is induced by the Pauli exclusion principle. The
cross correlation between N1 and N2 following from Eq. �13�
is

C1,2 = 2e�V1 + V2�GCA − 2e�V2 − V1�GET �16a�

−
10eV1

g�

�G1 − Gnl��G2 − Gnl� �16b�

+
4e�V2 − V1�

g�

	GCA�G2 + 2GDA2� − GDA2Gnl
 , �16c�

where we have defined the local differential conductances
Gn=�nIn and the conductance for direct Andreev reflection
into terminal n is GDAn=gS

2gn
2 /2g�.29 We now focus on the

competition between CA and ET. When the two normal-
metal terminals are at equal voltage V1=V2, the contribution
from ET and also the term in Eq. �16� vanishes and we are
left with a positive contribution to the cross correlations from
CA due to the correlated particle transfer into N1 and N2. An
additional negative contribution due to the Pauli principle in
Eq. �16b� vanishes in the limit of asymmetric conductances
gS�g or g1�2��g2�1� ,gS due to the noisy �Poissonian� statis-
tics of the incoming supercurrent. A negative contribution
from ET in Eq. �16a� is induced when there is a voltage
difference between the normal-metal terminals due to the

EF

N2 S N1

m2 m1

∆
−|eV2| EF

m2 m1

N2 N1c

−|eV2|

(a) (b)

FIG. 2. �Color online� Transport processes in the three-terminal
device when eV1=0. �a� Crossed Andreev reflection: a Cooper pair
from S is converted into an electron-hole pair in c by Andreev
reflection, and the electron with energy +E is transferred into N1

and the hole with energy −E is transferred into N2. Tunnel barriers
between the reservoirs may be spin active and are described by
magnetization vectors m that in this paper are considered collinear.
�b� Electron transfer: a particle from N1 tunnels through the cavity
c into N2. The density of states in the cavity c is suppressed due to
the proximity effect from the superconducting terminal.
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currents with opposite signs in N1 and N2 resulting from this
process. This demonstrates that it is possible to tune the sign
of cross correlations by the voltages V1 and V2.3 The contri-
bution to C1,2 in Eq. �16� is proportional to the voltage dif-
ference V1−V2 and vanishes in the limit of asymmetric con-
ductances gS�g or g1�2��g2�1� ,gS.

It is interesting to compare Sb with the corresponding
CGF when S is in the normal state,

Sb = −
t0�V2 − V1�

2e

�
�g1 + gS + g2�2 + 4g2g1ei�1−i�2 + 4g2gSei�S−i�2.

�17�

Here we see a contribution due to transport between N1 and
N2 that is similar to the one outside the double square root in
Eq. �14b�. Superconductivity leads to the double square root
in Eq. �14b� that takes into account the correlation of trans-
port through c by Andreev reflections and ET. The compli-
cated dependence on the counting fields in Eq. �14b� pre-
cludes a simple interpretation of Sb in terms of the
probabilities of elementary charge-transfer processes. How-
ever, when gS�g or g1�2��g2�1� ,gS we can expand the
square roots in Sb and obtain the CGF

Sb = −
t0�V2 − V1�

2g�
3 e

	g1g2�gS
2 + 2g2�ei�1−i�2 + gS

2g1g2e2i�S−i�1−i�2

+ gS
2g2

2e2i�S−2i�2
 . �18�

In this limit the CGF describes independent CA, ET, and DA
Poisson processes. The prefactors determine the average
number of charges transferred by each process in time t0.

To illustrate the physics described by Sb in the limit in-
troduced above, let us examine the probability distribution
obtained by the definition in Eq. �7�. If we consider the cur-
rent response in N1 to a voltage in N2, we can consider that
V1=0 and the only contribution to the total CGF S comes
from Sb. The normalized probability distribution for the
transport at terminal N1 following from Eq. �18� then be-
comes

P�N1;t0� = e−N̄1g�
2 /g2 �

k	�N1�
k+N1 even

�N̄1
gS

2

2g2�k+N1/2

��N̄1� gS
2

2g2 + 1��k−N1/2

��� k + N1

2
� ! � k − N1

2
�!�−1

. �19�

Here we have defined the mean number of particles trans-
ferred in time t0,

N̄1 =
�I1�t0

e
=

V2t0

e

g1g2

g�1 + gS
2/g2�3/2 . �20�

Equation �19� describes a joint probability distribution for
CA and ET processes with Poissonian statistics and is con-
strained such that the number of CA events described by the

weight gS
2 /2g2 subtracted by the number of ET events de-

scribed by the weight gS
2 /2g2+1 is N1 as required. When

gS /g�1, the mean number of particles transferred vanishes
according to Eq. �20� and probability distribution �19� is
symmetric around N1=0. This means that the average current
vanishes since the probabilities for ET and CA are equal. In
general, the probability distribution has its maximum for
negative N1, i.e., ET is more probable than CA reflection. In
Fig. 3 we have plotted probability distribution �19� for dif-
ferent values of gS /g. For small ratios gS /g, ET dominates
and the probability distribution is centered at a negative
value for N1. As expected, we see that the center of the
probability distribution �mean number of particles trans-
ferred� is shifted from a negative value toward zero with
increasing gS /g. The width of the distribution, described by
the autocorrelation noise C1,1 	see Eq. �12�
, decreases with
increasing gS /g.

IV. SPIN-ACTIVE CONNECTORS

Qualitatively, the effect of spin-polarizing interfaces on
the competition between CA and ET processes in S-F sys-
tems can be understood as follows.20 The ET process is fa-
vored when magnetizations of ferromagnetic leads are paral-
lel since the same spin must traverse both the interfaces
between c and the ferromagnets. On the other hand, CA re-
flection is favored in an antiparallel configuration since two
particles with opposite spins must traverse the interfaces.
This behavior was experimentally observed in Refs. 32 and
33 where ferromagnetic Fe probes were contacted to a super-
conducting Al wire.

The FCS of a beam splitter with spin-active contacts and
V1=V2 was considered in our previous paper37 and consti-
tutes Sa; see Eq. �21a�. In this case the only transport pro-
cesses are DA and CA reflection, and we found that CA

0

0.1

0.2

-30 -20 -10 0 10

P
(N

1;
t 0

)

N1

gS/g=5.00
0.05

FIG. 3. �Color online� Probability distribution for transport of
N1 electrons into terminal N1, P�N1 ; t0� 	Eq. �19�
. We show distri-
butions for two different values of the parameter gS /g=5.00 �red
	gray
 solid impulses� and 0.05 �blue 	dark gray
 dotted impulses�.
We have chosen the parameter �=g1g2V2t0 /eg=20, which gives the

mean value N̄1 for small gS /g; see Eq. �20�.
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is enhanced in an antiparallel alignment of the magnetiza-
tions as expected.

When V2�V1, there can also be ET, and an additional
effect is spin accumulation at the node. With collinear mag-

netizations 	sign of gMRn describes magnetization directions
up �positive� or down �negative� along the z quantization
axis
, we find that in the regime eV1�E�eV2, Sb=Sb+
+Sb− where Sb� is given below in Eq. �21b�,

Sa = −
t0V

2e


1 +
1 −
4gMR

2

g�
4 �gS

2 + g2� +
4gS

2

g�
4 �

m,n
�gmgn − gMRmgMRn��e2i�S−i�m−i�n − 1� , �21a�

Sb� = −
t0g��V2 − V1�

2
2e
�1 +

2

g�
2 �g1 + �gMR1��g2 + �gMR2��ei�1−i�2 − 1� + �1 −

4gMR
2

g�
4 �gS

2 + g2� +
4gS

2

g�
4 �

n

�gn − �gMRn��g2 + �gMR2�

��e2i�S−i�n−i�2 − 1� +
4�g − gMR�2

g�
4 �g1 + �gMR1��g2 + �gMR2��ei�1−i�2 − 1�1/2��1/2

. �21b�

Here we have redefined g�= �gS
2 +g2+gMR

2 �1/2 and introduced
gMR=gMR1+gMR2. The expression for Sb reduces to the result
for nonpolarizing contacts, Eq. �14�, in the limit that gMRn
→0. The two terms Sb� correspond to the two possible di-
rections of the spin�s� involved in the charge-transfer pro-
cesses. The spin-dependent conductance for a spin up �down�
is gn+ �−�gMRn. In ET, one spin must traverse the two spin-
active interfaces; thus the counting factor for spin � is pro-
portional to the weight �g1+�gMR1��g2+�gMR2�. The two
spin channels are independent. The two opposite spins of an
Andreev reflected quasiparticle pair can be CA reflected into
terminals with different polarizations gMR1 and gMR2 accord-
ing to the prefactor �g1−�gMR1��g2+�gMR2�, and each pos-
sibility for the directions of the two spins gives an indepen-
dent contribution to the CGF Sb.

In the limit that gS�g or g1�2��g2�1� ,gS �gMRn�gn by
definition�, we can expand the double square roots and per-
form the summation over Sb� which yields

Sb = −
t0�V2 − V1�

2eg�
3 �	g�

2 + �g − gMR�2
�g1g2

+ gMR1gMR2�ei�1−i�2 + gS
2�g1g2 − gMR1gMR2�e2i�S−i�1−i�2

+ gS
2�g2

2 − gMR2
2 �e2i�S−2i�2� . �22�

The nonlocal conductance following from Eq. �22� is given
by

GET = �g1g2 + gMR1gMR2�
	g�

2 + �g − gMR�2

2g�

3 , �23a�

GCA = �g1g2 − gMR1gMR2�
gS

2

2g�
3 . �23b�

This immediately demonstrates that ET is favored in a par-
allel configuration of the magnetizations �gMR1gMR2�0� as
the same spin in this case tunnels through both interfaces. On
the other hand, CA reflection is favored by antiparallel mag-

netizations �gMR1gMR2�0� since the opposite spins of a sin-
glet tunnel through different interfaces. These qualitative fea-
tures are in agreement with Ref. 20.

The cross correlation following from Eq. �22� is

C1,2 = 2e�V2 + V1�GCA − 2e�V2 − V1�GET. �24�

The sign of C1,2 can now be tuned by two experimental
control parameters: the bias voltages through the prefactors
in Eq. �24� and the relative magnetization direction that de-
termines the magnitudes of GET and GCA.

In the energy range V1�E�V2 we are in this setup mea-
suring the energy of the quasiparticles involved in crossed
Andreev reflection; see Fig. 2. Since the electronlike quasi-
particle with energy +E must flow into N1, and the −E hole-
like quasiparticle must flow into N2, this means that the en-
tanglement in the energy degree of freedom of Andreev
reflected quasiparticle pairs has collapsed.

Triplet superconductivity

Superconducting correlations with triplet pairing symme-
try in the spin space can be induced by magnetic exchange
fields in singlet superconductor heterostructures. This effect
has attained considerable interest and has recently been ex-
perimentally demonstrated �see Refs. 44–46 and references
therein�. The different spin-space symmetry of the induced
electron-hole correlations opens interesting experimental ap-
plications where, e.g., superconducting correlations can
propagate through a strong ferromagnetic material.47,48 We
have studied the FCS when S is a source of spin triplet
quasiparticle pairs, and in this section we summarize our
results for collinear magnetizations when V1=V2.

The CGF for the spin triplet Cooper pairs with Sz���=0,
where Sz is the spin operator along the z axis and ��� is the
spin part of the Cooper pair wave function, is identical to the
CGF for conventional spin-singlet superconductors. We
showed in Ref. 37 that CGF �21a� reveals the entangled na-
ture of the quasiparticle pairs. The Sz���=0 spin triplet states
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are also one of the maximally entangled Bell states which
implies that the magnetization dependence for CA is the
same for singlet and triplet in the collinear case. This result
can be shown also straightforwardly by computing the two-
electron tunneling probability p1,2 which is proportional to

����g1+gMR1�̄3� � �g2+gMR2�̄3����+1↔2.
The triplet states where Sz���= �� ��� give rise to a

different dependence on the magnetization configurations in
the CGF since the quasiparticle pairs are not in spin en-
tangled states but rather in product states. We obtain the CGF

S� = − �
�

t0V

2
2e

1 +
1 −

4gMR
2

g�
4 �gS

2 + g2� +
4gS

2

g�
4 �g1 + �gMR1��g2 + �gMR2��e2i�S−i�m−i�n − 1� . �25�

Compared to singlet case �21�, we see that the CA counting
prefactor factorizes as a result of the nonentangled product
state of the quasiparticle pairs. This magnetization depen-
dence can be recovered also by calculating the two-particle
tunneling probability p1,2 as discussed above.

V. CONCLUSION

We have calculated the full counting statistics of multiter-
minal tunnel-junction superconductor-normal-metal and
superconductor-ferromagnet beam splitter devices and stud-
ied the resulting currents and cross correlation. The probabil-
ity distribution for transport at a normal-metal drain contact
demonstrates that the probability for electron transport be-
tween two normal-metal terminals is larger than the probabil-
ity for crossed Andreev reflection. A finite voltage difference
between the normal-metal contacts introduces competing

contributions to the cross correlations from electron transport
between normal terminals and crossed Andreev reflection.
Finally, we have shown how spin-active contacts act as filters
for spin and calculated the cumulant generating function.
The sign of the cross correlation due to the competing con-
tributions from electron transport between drain terminals
and crossed Andreev reflection can in this case be deter-
mined by two external control parameters, i.e., bias voltages
and the relative magnetization orientation. Finally, we make
some remarks about the counting statistics in the case of spin
triplet superconductors.
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